Jakobson’s Theorem near saddle-node bifurcations

نویسنده

  • Ale Jan Homburg
چکیده

We discuss one parameter families of unimodal maps, with negative Schwarzian derivative, unfolding a saddle-node bifurcation. It was previously shown that for a parameter set of positive Lebesgue density at the bifurcation, the maps possess attracting periodic orbits of high period. We show that there is also a parameter set of positive density at the bifurcation, for which the maps exhibit absolutely continuous invariant measures which are supported on the largest possible interval. We prove that these measures converge weakly to an atomic measure supported on the orbit of the saddle-node point. Using these measures we analyze the intermittent time series that result from the destruction of the periodic attractor in the saddle-node bifurcation and prove asymptotic formulae for the frequency with which orbits visit the region previously occupied by the periodic attractor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittency and Jakobson’s theorem near saddle-node bifurcations

We discuss one parameter families of unimodal maps, with negative Schwarzian derivative, unfolding a saddle-node bifurcation. We show that there is a parameter set of positive but not full Lebesgue density at the bifurcation, for which the maps exhibit absolutely continuous invariant measures which are supported on the largest possible interval. We prove that these measures converge weakly to a...

متن کامل

Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance ‘bubble’

The dynamics near a Hopf-saddle-node bifurcation of fixed points of diffeomorphisms is analysed by means of a case study: a two-parameter model map G is constructed, such that at the central bifurcation the derivative has two complex conjugate eigenvalues of modulus one and one real eigenvalue equal to 1. To investigate the effect of resonances, the complex eigenvalues are selected to have a 1:...

متن کامل

Delay-Induced Multistability Near a Global bifurcation

We study the effect of a time-delayed feedback within a generic model for a saddle-node bifurcation on a limit cycle. Without delay the only attractor below this global bifurcation is a stable node. Delay renders the phase space infinite-dimensional and creates multistability of periodic orbits and the fixed point. Homoclinic bifurcations, period-doubling and saddle-node bifurcations of limit c...

متن کامل

Slowly Coupled Oscillators: Phase Dynamics and Synchronization

In this paper we extend the results of Frankel and Kiemel [SIAM J. Appl. Math, 53 (1993), pp. 1436–1446] to a network of slowly coupled oscillators. First, we use Malkin’s theorem to derive a canonical phase model that describes synchronization properties of a slowly coupled network. Then, we illustrate the result using slowly coupled oscillators (1) near Andronov–Hopf bifurcations, (2) near sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001